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Abstract—Dataflow models of computation are widely used
for the specification, analysis, and optimization of Digital Signal
Processing (DSP) applications. In this paper a new meta-model
called PiMM is introduced to address the important challenge of
managing dynamics in DSP-oriented representations.

PiMM extends a dataflow model by introducing an explicit
parameter dependency tree and an interface-based hierarchical
compositionality mechanism. PiMM favors the design of highly-
efficient heterogeneous multicore systems, specifying algorithms
with customizable trade-offs among predictability and exploita-
tion of both static and adaptive task, data and pipeline paral-
lelism. PiMM fosters design space exploration and reconfigurable
resource allocation in a flexible dynamic dataflow context.

I. INTRODUCTION

Dataflow Models of Computation (MoCs) can be used to
specify a wide range of Digital Signal Processing (DSP) appli-
cations such as video decoding [1], telecommunication [2], and
computer vision [3] applications. The popularity of dataflow
MoCs is due to their great analysability and their natural
expressivity of the parallelism of a DSP application which
make them particularly suitable to exploit the parallelism
offered by heterogeneous Multiprocessor Systems-on-Chips
(MPSoCs). The increasing complexity of DSP applications
leads to the continuing introduction of new dataflow MoCs,
and the extension of previously developed MoCs for different
types of modeling contexts.

Representing an application with a Dataflow Process Net-
work (DPN) [4] consists of dividing this application into per-
sistent processing entities, named actors, connected by First In,
First Out data queues (FIFOs). An actor performs processing
(it “fires”) when its incoming FIFOs contain enough data
tokens. The number of data tokens consumed and produced
by an actor for each firing is given by a set of firing rules [4].
Firing rules can be static or they can depend on data, as in the
CAL language [5], or on parameters, as in the Parameterized
SDF (PSDF) MoC [6].

In this paper, we propose a new meta-model called Pa-
rameterized and Interfaced dataflow Meta-Model (PiMM) that
extends the semantics of a targeted dataflow MoC to enable
the specification of dynamically reconfigurable DSP applica-
tions. PiMM builds on a novel integration of two previously
developed dataflow modeling techniques called parameterized
dataflow [6] and interface-based dataflow [7].

PiMM extends the semantics of a targeted dataflow MoC
by introducing explicit parameters and a parameter dependency

tree. Parameters can influence, both statically and dynamically,
different properties of a DPN such as the firing rules of
actors. PiMM also adds to the targeted MoC an interface-
based hierarchy mechanism that enforces the compositionality
of the extended model and improves its predictability by
restricting the scope of its parameters and by enabling a top-
down parameterization. In this paper, the capabilities of the
PiMM meta-model are demonstrated by applying it to the
Synchronous Dataflow (SDF) MoC (Section III).

Previous work on dataflow MoCs is presented in Section II
and the semantics of PiMM is formally introduced in Sec-
tion III. Section IV presents an analysis of the model behavior
and Section V compares PiMM with existing dataflow MoCs.
Finally, an application example from the LTE telecommunica-
tion standard is presented in Section VI.

II. BACKGROUND AND RELATED WORK

A. Static Dataflow MoCs

Synchronous Dataflow (SDF) [8] is the most commonly
used DPN MoC. Production and consumption token rates set
by firing rules are fixed scalars in an SDF graph. A static
analysis of an SDF graph ensures consistency and schedulabi-
lity properties that imply deadlock-free execution and bounded
FIFO memory needs.

An SDF graph G = (A,F ) (Figure 1) contains a set of
actors A that are interconnected by a set of FIFOs F . An
actor a ∈ A comprises a set of data ports (P in

data , P
out
data) where

P in
data and P out

data respectively refer to a set of data input and
output ports, used as anchors for FIFO connections. Functions
src : F → P out

data and snk : F → P in
data associate source and

sink ports to a given FIFO and a data rate is specified for each
port by the function rate : P in

data ∪ P out
data → N corresponding

to the fixed firing rules of an SDF actor. A delay d : F → N
is set for each FIFO, corresponding to a number of tokens
initially present in the FIFO.
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Fig. 1. Example of an SDF Graph

If an SDF graph is consistent and schedulable, a fixed
sequence of actor firings can be repeated indefinitely to execute
the graph, and there is a well defined concept of a minimal



sequence for achieving an indefinite execution with bounded
memory. Such a minimal sequence is called graph iteration
and the number of firings of each actor in this sequence is
given by the graph Repetition Vector (RV).

Graph consistency means that no FIFO accumulates tokens
indefinitely when the graph is executed (preventing FIFO over-
flow). Consistency can be proved by verifying that the graph
topology matrix has a non-zero vector in its null space [8].
When such a vector exists, it gives the RV for the graph. The
topology of an SDF graph characterizes actor interconnections
as well as token production and consumption rates on each
FIFO. A graph is schedulable if and only if it is consistent
and has enough initial tokens to execute the first graph iteration
(preventing deadlocks by FIFO underflow).

Research on dataflow modeling leads to the continuing
introduction of new dataflow models. Static extensions of the
SDF model such as the Cyclo-Static Dataflow (CSDF) [9], the
multidimensional SDF [10], the Interface-Based Synchronous
Dataflow (IBSDF) [7], and the Affine Dataflow (ADF) [11]
have been proposed to enhance its expressiveness and con-
ciseness while preserving its predictability. The Compositional
Temporal Analysis (CTA) model is a non-executable timed
abstraction of the SDF MoC that can be used to analyze
efficiently the schedulability and the temporal properties of
applications [12]. The IBSDF and the CTA models both
enforce the compositionality of applications. A model is com-
positional if the properties (schedulability, deadlock freeness,
...) of an application graph composed of several sub-graphs
are independent from the internal specifications of these sub-
graphs [13].

B. Interface-Based Synchronous Dataflow MoC

Interface-Based Synchronous Dataflow (IBSDF) [7] is a
hierarchical extension of the SDF model interpreting hierarchy
levels as code closures. IBSDF fosters subgraph composition,
making subgraph executions equivalent to imperative language
function calls. IBSDF has proved to be an efficient way to
model dataflow applications [2]. IBSDF interfaces are inherited
by the PiMM meta-model proposed in this paper (Section III).

In addition to the SDF semantics, IBSDF adds interface
elements to insulate levels of hierarchy in terms of schedula-
bility analysis. An IBSDF graph G = (A,F, I) contains a set
of interfaces I = (I indata , I

out
data) (Figure 2).

A data input interface iindata ∈ I indata in a subgraph is a
vertex transmitting to the subgraph the tokens received by its
corresponding data input port. If more tokens are consumed
on a data input interface than the number of tokens received
on the corresponding data input port, the data input interface
behaves as a circular buffer, producing the same tokens several
times.

A data output interface ioutdata ∈ Ioutdata in a subgraph is
a vertex transmitting tokens received from the subgraph to
its corresponding data output port. If a data output interface
receives too many tokens, it will behave like a circular buffer
and output only the last pushed tokens.

[7] details the behavior of IBSDF data input and out-
put interfaces as well as the IBSDF properties in terms of
compositionality and schedulability checking. Through PiMM,
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Fig. 2. Example of an IBSDF Graph

interface-based hierarchy can be applied to other dataflow
models than SDF with less restrictive firing rules.

C. Parameterized Dataflow MoCs

Parameterized dataflow is a meta-modeling framework
introduced in [6] that is applicable to all dataflow MoCs that
present graph iterations. When this meta-model is applied, it
extends the targeted MoC semantics by adding dynamically
reconfigurable hierarchical actors. A reconfiguration occurs
when values are dynamically assigned to the parameters of a
reconfigurable actor, causing changes in the actor computation
and in the production and consumption rates of its data
ports. As presented in [14], reconfigurations can only occur at
certain points, namely quiescent points, during the execution
of a graph in order to ensure the runtime integrity of the
application.

In parameterized dataflow, each hierarchical actor is com-
posed of 3 subgraphs, namely the init φi, the subinit φs, and
the body φb subgraphs.

The φi subgraph sets parameter values that can influence
both the production and consumption rates on the ports of the
hierarchical actor and the topology of the φs and φb subgraphs.
The φi subgraph is executed only once per iteration of the
graph to which its hierarchical actor belongs and can neither
produce nor consume data tokens.

The φs subgraph sets the remaining parameter values
required to completely configure the topology of the φb sub-
graph. The φs subgraph is executed at the beginning of each
firing of the hierarchical actor. It can consume data tokens on
input ports of the hierarchical actor but can not produce data
tokens.

The φb subgraph is executed when its configuration is
complete, right after the completion of φs. The body subgraph
behaves as any graph implemented with the MoC to which the
parameterized dataflow meta-model was applied.

PSDF is the MoC obtained by applying the parameterized
dataflow meta-model to the SDF MoC. It has been shown to
be an efficient way to prototype streaming applications [15].
The objective of PiMM is to further improve parameterization
compared to parameterized dataflow by introducing an explicit
parameter dependency tree and by enhancing graph composi-
tionality. Indeed, in a PSDF graph, ports are simple connectors
between data FIFOs that do not insulate levels of hierarchy
(Section II-B). For example, in the PSDF graph presented in
Figure 6 the consumption rate on the hierarchical input port
symbols depends on the RV of the actor subgraphs.

Other parameterized dataflow MoCs were previously de-
veloped such as the Scenario-Aware Dataflow (SADF) [1], an



analysis-oriented model based on a probabilistic description of
the dynamic firing rules of actors; or the Compaan generated
KPN (CPN) [3], a parameterized extension of the Kahn Process
Network (KPN) MoC. In these models, the complexity of
the parameterization mechanism is handled by actors that can
reconfigure the firing rules of other actors (or their own) via
“control channels”. This reconfiguration mechanism differs
from that of PiMM in that the latter relies on the explicit
definition of parameters and their dependencies which enables
a precise specification of what is influenced by a parameter,
even in multiple levels of hierarchy, leading to an enhanced
predictability and quasi-static scheduling potential for the
model (Section VI-B).

III. PARAMETERIZED AND INTERFACED DATAFLOW
META-MODELING

The Parameterized and Interfaced dataflow Meta-Model
(PiMM) can be used similarly to the parameterized dataflow to
extend the semantics of all dataflow MoCs implementing the
concept of graph iteration. PiMM adds both interface-based
hierarchy and an explicit parameter dependency tree to the
semantics of the extended MoC.

In this section we formally present PiMM through its
application to the SDF MoC. The model resulting from this
application is called Parameterized and Interfaced Synchronous
Dataflow (πSDF) or (PiSDF). The pictograms associated to
the different elements of the πSDF semantics are presented in
Figures 3 and 4.

A. πSDF Semantics

A πSDF graph G = (A,F, I,Π,∆) contains, in addition
to the SDF actor set A and FIFO set F , a set of hierarchical
interfaces I , a set of parameters Π, and a set of parameter
dependencies ∆.

1) Parameterization semantics:
A parameter π ∈ Π is a vertex of the graph associated to a
parameter value v ∈ N that is used to configure elements of
the graph. For a better analyzability of the model, a parameter
can be restricted to take only values of a finite subset of N. A
configuration of a graph is the assignation of parameter values
to all parameters in Π.

An actor a ∈ A is now associated to a set of ports (P in
data ,

P out
data , P in

cfg , P out
cfg ) where P in

cfg and P out
cfg are a set of configura-

tion input and output ports respectively. A configuration input
port pincfg ∈ P in

cfg of an actor a ∈ A is an input port that depends
on a parameter π ∈ Π and can influence the computation of
a and the production/consumption rates on the dataflow ports
of a. A configuration output port poutcfg ∈ P out

cfg of an actor
a ∈ A is an output port that can dynamically set the value of
a parameter π ∈ Π of the graph (Section III-B3).

A parameter dependency δ ∈ ∆ is a directed edge of
the graph that links a parameter π ∈ Π to a graph element
influenced by this parameter. Formally a parameter dependency
δ is associated to the two functions setter : ∆ → Π ∪ P out

cfg

and getter : ∆ → Π ∪ P in
cfg ∪ F which respectively give the

source and the target of δ. A parameter dependency set by a
configuration output port poutcfg ∈ P out

cfg of an actor a ∈ A can
only be received by a parameter vertex of the graph that will

dispatch the parameter value to other graph elements, building
a parameter dependency tree. Dynamism in PiMM relies on
parameters whose values can be used to influence one or
several of the following properties: the computation of an
actor, the production/consumption rates on the ports of
an actor, the value of another parameter, and the delay
of a FIFO (Section II-A). In PiMM, if an actor has all its
production/consumption rates set to 0, it will not be executed.

A parameter dependency tree T = (Π,∆) is formed by
the set of parameters Π and the set of parameter dependencies
∆. The parameter dependency tree T is similar to a set of
combinational relations where the value of each parameter is
resolved virtually instantly as a function of the parameters it
depends on. This parameter dependency tree is in contrast to
the precedence graph (A,F ) where the firing of the actors is
enabled by the data tokens flowing on the FIFOs.

2) πSDF hierarchy semantics:
The hierarchy semantics used in πSDF inherits from the
interface-based dataflow introduced in [7] and presented in
Section II-B. In πSDF, a hierarchical actor is associated to a
unique πSDF subgraph. The set of interfaces I of a subgraph
is extended as follows: I = (I indata , I

out
data , I

in
cfg , I

out
cfg ) where

I incfg is a set of configuration input interfaces and Ioutcfg a set of
configuration output interfaces.

Configuration input and output interfaces of a hierarchical
actor are respectively seen as a configuration input port pincfg ∈
P in
cfg and a configuration output port poutcfg ∈ P out

cfg from the
upper level of hierarchy (Section III-A1).

From the subgraph perspective, a configuration input inter-
face is seen as a locally static parameter whose value is left
undefined.

A configuration output interface enables the transmission
of a parameter value from the subgraph of a hierarchical actor
to upper levels of hierarchy. In the subgraph, this parameter
value is provided by a FIFO linked to a data output port poutdata
of an actor that produces data tokens with values v ∈ N. In
cases where several values are produced during an iteration of
the subgraph, the configuration output interface behaves like a
data output interface of size 1 and only the last value written
will be produced on the corresponding configuration output
port of the enclosing hierarchical actor (Section II-B).

Figure 3 presents an example of a static πSDF description.
Compared to Figure 2, it introduces parameters and parameter
dependencies that compose a PiMM parameter dependency
tree. The modeled example illustrates the modeling of a test
bench for an image processing algorithm. In the example, one
token corresponds to a single pixel in an image. Images are
read, pixel by pixel, by actor A and stored, pixel by pixel, by
actor C. A whole image is processed by one firing of actor
B. A feedback edge with a delay stores the previous image
for comparison with the current one. Actor B is refined by
an actor B1 processing one N th of the image. In Figure 3,
the size of the image picsize and the parameter N are locally
static.

B. πSDF Reconfiguration

As introduced in [14], the frequency with which the value
of a parameter is changed influences the predictability of the
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Fig. 3. Example of a πSDF Graph with Static Parameters

application. A constant value will result in a high predictability
while a value which changes at each iteration of a graph will
cause many reconfigurations, thus lowering the predictability.

There are two types of parameters π ∈ Π in πSDF:
configurable parameters and locally static parameters. Both
restrict how often the value of the parameter can change.
Regardless of the type, a parameter must have a constant value
during an iteration of the graph to which it belongs.

1) Configurable parameters:
A configurable parameter πcfg ∈ Π is a parameter whose value
is dynamically set once at the beginning of each iteration of
the graph to which it belongs. Configurable parameters can
influence all elements of their subgraph except the produc-
tion/consumption rates on the data interfaces I indata and Ioutdata .
As explained in [6], [14], this restriction is essential to ensure
that, as in IBSDF, a parent graph has a consistent view of
its actors throughout an iteration, even if the topology may
change between iterations.

The value of a configurable parameter can either be set
through a parameter dependency coming from an other config-
urable parameter or through a parameter dependency coming
from a configuration output port poutcfg of a configuration actor
(Section III-B3). In Figure 4, N is a configurable parameter.

2) Locally static parameters:
A locally static parameter πstat ∈ Π of a graph has a value
that is set before the beginning of the graph execution and
which remains constant over one or several iterations of this
graph. In addition to the properties listed in Section III-A1, a
locally static parameter belonging to a subgraph can also be
used to influence the production and consumption rates on the
I indata and Ioutdata interfaces of its hierarchical actor.

The value of a locally static parameter can be statically set
at compile time, or it can be dynamically set by configurable
parameters of upper levels of hierarchy via parameter depen-
dencies. For example, a subgraph sees a configuration input
interface as a locally static parameter but this interface can take
different values at runtime if its corresponding configuration
input port is connected to a configurable parameter. In Figure 4,
picsize is a locally static parameter both in main graph and
in subgraph B.

A partial configuration state of a graph is reached when
the parameter values of all its locally static parameters are
set. Hierarchy traversal of a hierarchical actor is possible
only when the corresponding subgraph has reached a partial
configuration state.

A complete configuration state of a graph is reached when
the values of all its parameters (locally static and configurable)
are set. If a graph does not contain any configurable parameter,
its partial and complete configurations are equivalent. Only
when a graph is completely configured is it possible to check
its consistency, compute a schedule, and execute it.

3) Configuration Actors:
A firing of an actor a with a configuration output port poutcfg
produces a parameter value that can be used via a parameter
dependency δ to dynamically set a configurable parameter π
(Section III-B1), provoking a reconfiguration of the graph
elements depending on π. In PiMM, such an actor is called
a configuration actor. The execution of a configuration ac-
tor is the cause of a reconfiguration and must consequently
happen only at quiescent points during the graph execution,
as explained in [14]. To ensure the correct behavior of πSDF
graphs, a configuration actor acfg ∈ A of a subgraph G is
subject to the following restrictions:

R1. acfg must be fired exactly once per iteration of G be-
fore the firing of any non-configuration actor. Indeed,
G reaches a complete configuration only when all its
configuration actors have fired.

R2. acfg must consume data tokens only from hierarchical
interfaces of G and must consume all available tokens
during its unique firing.

R3. The production/consumption rates of a acfg can only
depend on locally static parameters of G.

R4. Data tokens produced by acfg are seen as a data input
interface by other actors of G. (i.e. they are made avail-
able using a ring-buffer and can be consumed more than
once).

These restrictions naturally enforce the local synchrony con-
ditions of parameterized dataflow defined in [6] and reminded
in Section IV-A.

The firing of all configuration actors of a graph is needed
to obtain a complete configuration of this graph. Consequently,
configuration actors will always be executed before other
(non-configuration) actors of the graph to which they belong.
Configuration actors are the only actors whose firing is not
data-driven but driven by hierarchy traversal.

The sets of configuration and non-configuration actors of
a graph are respectively equivalent to the subinit φs and the
body φb subgraphs of parameterized dataflow [6]. Neverthe-
less, configuration actors provide more flexibility than subinit
graphs as they can produce data tokens that will be consumed
by non-configuration actors of their graph. The init subgraph
φi has no equivalent in PiMM as its responsibility, namely the
configuration of the production/consumption rates on the actor
interfaces, is performed by configuration input interfaces and
parameter dependencies.

Figure 4 presents an example of a πSDF description with
reconfiguration. It is a modified version of the example in
Figure 3 presented in Section III-A2. In Figure 4, the parameter
N is a configurable parameter of subgraph B, while the
parameter picsize is a locally static parameter. The number of
firings of actor B1 for each firing of actor B is dynamically
configured by the configuration actor setN . In this example,
the dynamic reconfiguration dynamically adapts the number N



of firings of B1 to the number of cores available to perform
the computation of B. Indeed, since B1 has no self-loop FIFO,
the N firings of B1 can be executed concurrently.

configuration
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Fig. 4. Example of a πSDF Graph with Reconfiguration

IV. MODEL ANALYSIS AND BEHAVIOR

The πSDF MoC presented in Section III is dedicated to
the specification of applications with both dynamic and static
parameterizations. This dual degree of dynamism implies a
two-step analysis of the behavior of applications described
in πSDF: a compile time analysis and a runtime analysis.
In each step a set of properties of the application can be
checked, such as the consistency, the deadlock freeness, and
the boundedness. Other operations can be performed during
one or both steps of the analysis such as the computation of a
schedule or the application of graph transformation to enhance
the performance of the application.

A. Compile Time Schedulability Analysis

πSDF inherits its schedulability properties both from the
interface-based dataflow modeling and the parameterized da-
taflow modeling.

In interface-based dataflow modeling, as proved in [7], a
(sub)graph is schedulable if its precedence SDF graph (A,F )
(excluding interfaces) is consistent and deadlock-free. When
a πSDF graph reaches a complete configuration, it becomes
equivalent to an IBSDF graph. Given a complete configuration,
the schedulability of a πSDF graph can thus be checked using
the same conditions as in interface-based dataflow.

In parameterized dataflow, the schedulability of a graph
can be guaranteed at compile time for certain applications
by checking their local synchrony [6]. A PSDF (sub)graph
is locally synchronous if it is schedulable for all reachable
configurations and if all its hierarchical children are locally
synchronous. As presented in [6], a PSDF hierarchical actor
composed of three subgraphs φi, φs and φb must satisfy the 5
following conditions in order to be locally synchronous:

1. φi, φs and φb must be locally synchronous, i.e. they must
be schedulable for all reachable configurations.

2. Each invocation of φi must give a unique value to
parameter set by this subgraph.

3. Each invocation of φs must give a unique value to
parameter set by this subgraph.

4. Consumption rates of φs on interfaces of the hierarchical
actor cannot depend on parameters set by φs.

5. Production/consumption rates of φb on interfaces of the
hierarchical actor cannot depend on parameters set by φs.

The last four of these conditions are naturally enforced
by the πSDF semantics presented in Section III. However,
the schedulability condition number 1., which states that all
subgraphs must be schedulable for all reachable configurations,
cannot always be checked at compile time. Indeed, since
values of the parameters are freely chosen by the application
developer, non-schedulable graphs can be described. It is the
responsibility of the developer to make sure that an appli-
cation will always satisfy the schedulability condition; this
responsibility is similar to that of writing non-infinite loops
in imperative languages.

πSDF inherits from PSDF the possibility to derive quasi-
static schedules at compile time for some applications. A
quasi-static schedule is a schedule that statically defines part of
the scheduling decisions but also contains parameterized parts
that will be resolved at runtime. An example of quasi-static
schedule is given for the application case in Section VI.

B. Runtime Operational Semantics

Based on the πSDF semantics presented in Section III,
the execution of a subgraph G = (A,F, I,Π,∆) associated
to a hierarchical actor aG follows the following steps. The
execution of G restarts from step 1 each time the parent graph
of aG begins a new iteration.

1) Wait for a partial configuration of G, i.e. wait for all con-
figuration input interfaces in I incfg to receive a parameter
value.

2) Compute the production and consumption rates on the
data interfaces I indata and Ioutdata using the partial configu-
ration.

3) Wait until aG is fired by its parent graph. (enough data
tokens must be available on the FIFOs connected to the
data input ports P in

data of aG.)
4) Fire the configuration actors of A that will set the

configurable parameters of G: a complete configuration
is reached.

5) Check the local synchrony of G with the rates and delays
resulting from the complete configuration and compute a
schedule (if possible).

6) Fire the non-configuration actors of A following the
computed schedule: this corresponds to an iteration of
G.

7) Produce on the output ports P out
data and P out

cfg of aG the
data tokens and parameter values written by the actors of
G on the output interfaces Ioutdata and Ioutcfg .

8) Go back to step 3 to start a new iteration of G, i.e. a new
firing of aG.

These steps can be divided into two groups: steps 1 and
2 which correspond to a configuration phase of G that is not
clocked by data but is the result of the virtually instantaneous
propagation of parameter values in the parameter dependency
tree T ; and steps 3 to 8 which correspond to a firing of the
actor aG that is scheduled during the execution of its parent
graph.

If the schedulability of the graph could not be verified at
compile time (Section IV-A), it will be checked at runtime in



the 5th execution step. If a non-locally synchronous behavior
is detected, i.e. if the graph is not consistent or has deadlocks,
the execution of the application is terminated.

The runtime verification of the schedulability in step 5 can
be used as a debug feature that can be deactivated to improve
the performance of the application, thus assuming that a valid
schedule can always be found in this step.

As introduced in Sections III-A1 and III-B3, the opera-
tional semantics of the πSDF MoC is equivalent to the one of
the PSDF presented in [6]. Steps 1 and 2 are equivalent to the
execution of the init subgraph φi, steps 3 to 5 are equivalent
to the execution of the subinit subgraph φs, and steps 6 to 8
are equivalent to the execution of the body subgraph φb.

V. COMPARISON WITH EXISTING MOCS

Table I presents a comparison of dataflow MoCs based on
a set of common MoC features. The compared MoCs are the
SDF [8], the ADF [11], the IBSDF [7], the PSDF [6], the
SADF [1], the DPN [4], and the πSDF. In Table I, a black
dot indicates that the feature is implemented by a MoC, an
absence of dot means that the feature is not implemented, and
an empty dot indicates that the feature may be available for
some applications described with this MoC. It is important
to note that the full semantics of the compared MoCs is
considered here. Indeed, some features can be obtained by
using only a restricted semantics of other MoCs. For example,
all MoCs can be restricted to describe a SDF, thus benefiting
from the static schedulability and the decidability but losing
all reconfigurability.

Feature SDF
ADF

IBSDF
PSDF

πSDF
SADF

DPN

Hierarchy • • •
Compositional • •
Reconfigurable • • • •
Configuration dependency • •
Statically schedulable • • •
Decidability • • • ◦ ◦ •
Variable rates • • • • •
Non-determinism • •

TABLE I. FEATURES COMPARISON OF DIFFERENT DATAFLOW MOCS

The features compared in Table I are the following:
Hierarchy: composability can be achieved by associating a
subgraph to an actor. Compositional: graph properties are
independent from the internal specifications of the subgraphs
that compose it [13]. Reconfigurable: actors firing rules can be
reconfigured dynamically. Configuration dependency: the MoC
semantics includes an element dedicated to the transmission of
configuration parameters. Statically schedulable: a fully static
schedule can be derived at compile time [8]. Decidability:
the schedulability is provable at compile time. Variable rates:
production/consumption rates are not a fixed scalar. Non-
determinism: output of an algorithm does not solely depends
on inputs, but also on external factors (e.g. time, randomness).

A. PiMM versus Parameterized Dataflow

PiMM and the parameterized dataflow meta-model are
equivalent in many points. However, PiMM also introduces
new elements of semantics, such as the parameter dependency
tree, that enhances the predictability of the model, and hence
increases the performance of applications described with the
new meta-model.

1) Faster parameter propagation:
In PiMM, the explicit parameter dependency tree enables the
instant propagation of parameter values to lower levels of
hierarchy through configuration input ports P in

cfg and their
corresponding configuration input interfaces I incfg . With this
instant propagation, setting a parameter in a hierarchical graph
may instantly influence parameters deep in the hierarchy,
causing some subgraphs to reach a partial or a complete
configuration.

The instant parameter propagation of PiMM is in contrast
with the configuration mechanism of the parameterized da-
taflow where the body subgraph φb of an actor aG can be
configured by parameters set by the init subgraph φi or the
subinit subgraph φs but cannot directly depend on parameters
defined in the parent graph of aG [6]. This semantics implies
that a complete configuration of φb cannot be reached before
the execution of φi, even if actors in φi simply propagate
parameters from upper levels of hierarchy. Consequently, a
complete configuration of a subgraph may be reached earlier
for an application modeled with PiMM, providing valuable
information to the runtime management system and leading to
better scheduling or resource allocation choices, and therefore
better performance.

2) Lighter runtime overhead:
In parameterized dataflow, the production and consumption
rates on the data interfaces of a hierarchical actor are obtained
by computing the Repetition Vector (RV) [8] of its subgraph.
For dynamically scheduled applications, two computations of
the RV are performed at runtime. The first computation is done
using a partial configuration completed with default values for
undefined parameters. The second computation is done when
a complete configuration is reached. The default parameter
values used in the first computation must be carefully chosen
to ensure that the two RVs present the same production/con-
sumption rates on the interface of the actor, or otherwise the
application will be terminated.

In PiMM, the production and consumption rates on the
interfaces of a hierarchical actor only depend on the value of
locally static parameters. Since neither the first computation
of a RV nor the use of default parameter values are needed,
the runtime overhead is lighter and the development of the
application simpler as the developer does not need to specify
default values for configurable parameters.

3) Improved User-friendliness:
In parameterized dataflow, the specification of a parameterized
hierarchical actor is composed of three subgraphs, which may
lead to a rapid increase in the number of graphs to maintain
when developing an application. For example, the development
of an application with only a dozen parameterized hierarchical
actors requires the specification of almost forty graphs.

In PiMM, a single subgraph is needed to specify the
behavior of all hierarchical actors, parameterized or not.
The employment of a single subgraph is enabled by the
introduced parameter dependency tree that replaces the init
subgraph φi and by the configuration actors that replace the
subinit subgraphs φs. Using explicit parameter dependencies
also makes it possible to lower the number of actors of a
graph, by eliminating the actors whose only purpose was to
propagate parameters from the upper levels of the hierarchy.



Moreover, using parameter dependencies instead of referencing
parameters by their names makes it easier to identify what
is influenced by a parameter. All these features enhance the
readability of πSDF graphs, and hence make the model more
user-friendly. We have developed a systematic method to
transform πSDF specifications into functionality equivalent
PSDF specifications. For the sake of brevity this transformation
is not presented in this paper and will be the subject of a future
publication.

B. PiMM versus SADF

In [1], Theleen et al. introduce the Scenario-Aware Da-
taflow (SADF): a generalization of the SDF model where
dynamism is handled by special actors, called detectors, that
can reconfigure other actors of their graph by sending them
control tokens sequentially through specific FIFOs called con-
trol channels. When consumed by an actor, these control tokens
change the scenario in which the actor is running, possibly
modifying the nature of its computation, its run time, and its
production and consumption rates.

A first difference between SADF and πSDF is that in
SADF, each actor has a unique status that denotes the current
scenario of the actor. Because of this status, an actor cannot be
fired multiple times in parallel. In πSDF as in SDF, actors have
no state unless explicitly specified with a self-loop FIFO [8].
Consequently, the parallelism embedded in a πSDF description
is implicitly greater than the one of an SADF graph.

A second difference between SADF and πSDF lies in the
motivations behind the two models. SADF is an analysis-
oriented models that has proved to be an efficient model to
quickly derive useful metrics such as the worst-case throughput
or the long-run average performance [16]. To provide such
metrics, SADF relies on a timed description of the actors
behavior which corresponds to the execution time of the actor
on a specific type of processing elements. Conversely, like
PSDF, πSDF is an implementation-oriented, untimed, and
architecture-independent model which favors the development
of portable applications for heterogeneous MPSoCs. Moreover,
it was shown in [16] that implementation of applications
described in SADF are less efficient than PSDF applications.
Finally, the hierarchical compositionality mechanism of πSDF
has no equivalent in SADF.

VI. APPLICATION CASE: LTE PUSCH

A. Application Model

Figure 5 presents a πSDF specification of the bit processing
algorithm of the Physical Uplink Shared Channel (PUSCH)
decoding which is part of the Long-Term Evolution telecom-
munication standard (LTE). The LTE PUSCH decoding is ex-
ecuted in the physical layer of an LTE base station (eNodeB).
It consists of receiving multiplexed data from several User
Equipments (UEs), decoding it and transmitting it to upper
layers of the LTE standard.

Because the number of UEs connected to an eNodeB and
the rate for each UE can change every millisecond, the bit
processing of PUSCH decoding is inherently dynamic and
cannot be modeled with static MoCs such as SDF [2].
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Fig. 5. πSDF Model of the Bit Processing Part of the LTE PUSCH Decoding

The bit processing specification is composed of two hierar-
chical actors: the PUSCH Bit Processing actor and the Channel
Decoding actor. For clarity, Figure 5 shows a simplified
specification of the LTE PUSCH decoding process where some
actors and parameters are not depicted.

The PUSCH Bit Processing actor is executed once per invo-
cation of the PUSCH decoding process and has a static param-
eter, maxCBsPerUE, that represents the maximum number of
data blocks (named Code Block (CB)) per UE. maxCBsPerUE
statically sets the configuration input interface of the lower
level of the hierarchy, according to the eNodeB limitation
of bitrate for a single UE. The ConfigNbUE configuration
actor consumes data tokens coming from the Medium Access
Control (MAC) layer and sets the configurable parameter
NbUE with the number of UEs whose data must be decoded.
The converge actor consumes the multiplexed CBs received
from several antennas on the symbols data input interface
of the graph, produces NbUE tokens, each containing the
number of CBs for one UE, and produces NbUE packets of
maxCBsPerUE CBs, each containing the CBs of an UE.

The Channel Decoding hierarchical actor fires NbUE times,
once for each UE, because each UE has specific channel condi-
tions. This actor has a configuration input interface maxCBsPe-
rUE that receives the eponymous locally static parameter from
the upper hierarchy level. The ConfigNbCB configuration actor
sets the NbCB parameter with the number of CBs allocated for
the current UE. An explanation of the role of the remaining
actors can be found in [2].

This application illustrates the conciseness of the πSDF
model compared to the PSDF model. Indeed, only 2 graphs are
needed to specify the application with a πSDF MoC whereas
2 sets of 3 subgraphs (φi, φs and φb) are needed to specify
it with PSDF. Figure 6 presents a PSDF model of the same
example modeled with PiMM in Figure 5.

B. Quasi-static schedule

The use of quasi-static schedules is highly desirable in
many contexts compared to dynamic schedules. In particu-
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lar, quasi-static schedules for parameterized dataflow graphs
provide significant reductions in runtime overhead, and im-
provements in predictability (e.g. see [6], [17]). By facilitating
systematic construction of parameterized schedules — either
manually as part of the design process or automatically as
part of a graph transformation flow — our proposed PiMM
framework enhances the efficiency and confidence with which
dynamically structured signal processing systems can be im-
plemented.

The dynamic topology of a πSDF graph usually prevents
the computation of a static schedule since the production/con-
sumption rates are unknown at compile time. In the example
of Figure 5, despite the dynamic rates, the production rate
on all FIFOs always is a multiple of the consumption rate, or
vice versa. Consequently, the dynamic RV is an affine function
of the graph parameters and a quasi-static schedule can be
computed. Based on an affine formulation, the following quasi-
static schedule (Figure 7) can be derived for the graph of
Figure 5.

whi le ( 1 ){
/∗ E x e c u t e Top PUSCH∗ /
f i r e ConfigNbUE ; / / S e t s NbUE
f i r e Converge ;
r ep ea t NbUE t i m e s {

/∗ E x e c u t e Channel Decoding ∗ /
f i r e ConfigNbCB ; / / S e t s NbCB
f i r e KeepCur ren tTones ;
f i r e PerUEProcess ;
r ep ea t NbCB t i m e s {

f i r e B i t P r o c e s s ;
f i r e TurboDec ;

}
f i r e CrcCheck ;

}
}

Fig. 7. Quasi-static schedule for graph in Figure 5

VII. CONCLUSIONS

This paper introduces a meta-model of computation called
PiMM that can be applied to a dataflow MoC to increase its
expressivity, enable the specification of reconfigurable appli-
cations, and promote derivation of quasi-static schedules. We
have shown that while bringing dynamism and compositional-
ity, the explicit parameter dependency tree and the interface-
based hierarchy mechanism introduced by PiMM maintain
strong predictability for the extended model and enforce the
conciseness and readability of application descriptions. Useful
directions for future work include the application of PiMM to
dataflow MoCs other than SDF, further compile-time analysis
of PiMM specifications, and exploration of optimized runtime
management systems for PiMM. The objective of such runtime
management includes exploiting the predictability offered by
PiMM specifications to perform efficient application schedul-
ing and resource allocation, and incorporate results of relevant
compile-time analysis of the model.
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